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Argonne Leadership Computing Facility

ALCF offers different pipelines based on your 
computational readiness. Apply to the allocation 
program that fits your needs.

The Argonne Leadership Computing 
Facility provides world-class computing 
resources to the scientific community.
• Users pursue scientific challenges
• In-house experts to help maximize results
• Resources fully dedicated to open science

Architecture supports three 
types of computing 
§ Large-scale Simulation (PDEs, 
traditional HPC)
§ Data Intensive Applications 
(scalable science pipelines)
§ Deep Learning and Emerging 
Science AI (training and 
inferencing) 
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Surge of Scientific Machine Learning

• Simulations/ surrogate models
Replace, in part, or guide simulations 
with AI-driven surrogate models

• Data-driven models
Use data to build models without 
simulations

• Co-design of experiments
AI-driven experiments

Protein-folding

Braggs Peak

Galaxy Classification
Design infrastructure to facilitate and accelerate 
AI for Science (AI4S) applications

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.
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Integrating AI Systems in Facilities

AI-Accelerators

Experimental Facility
Supercomputers

Simulations

AI-Edge accelerator

SambaNova

Cerebras

Computing Facility

Data-driven Models
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ALCF AI Testbed

• Infrastructure of next-generation 

machines with AI hardware accelerators

• Provide a platform to evaluate usability 

and performance of AI4S applications

• Understand how to integrate AI systems 

with supercomputers to accelerate 

science

Cerebras CS-2 SambaNova DataScale

SN30

Graphcore

Bow Pod64
GroqRackHabana 

Gaudi1

https://www.alcf.anl.gov/alcf-ai-testbed
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Director’s Discretionary (DD) awards 
support various project objectives from 
scaling code to preparing for future 
computing competition to production 
scientific computing in support of strategic 
partnerships.

Allocation Request Form

Getting Started on ALCF AI Testbed:

Apply for a Director’s Discretionary (DD) 
Allocation Award

AI Testbed User Guide

SambaNova Datascale SN30 is available for 
allocations 

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed
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Community Engagement

• Regular AI training workshops with SambaNova 
• ATPESC H/W Architecture Day
• ALCF AI for Science training series for students

SC’22 Tutorial on Programming AI accelerators for 
Scientific Computing
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AI FOR SCIENCE APPLICATIONS

Protein-folding(Image: NCI)

Tokomak Fusion Reactor operations

Cancer drug response prediction

Imaging Sciences-Braggs Peak

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

and more..
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Drug Discovery - Uno
• CANDLE: Exascale Deep Learning and 

Simulation Enabled Precision Medicine for 
Cancer

• Implement deep learning architectures that are 
relevant to problems in cancer. 

• Focus on “Uno” application which aims to 
predict the drug response based on molecular 
features of tumor cells and drug descriptors.
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Drug Discovery - Uno
• Throughput comparison in samples/second:

SN30: 33392
A100: 7567

• 4.4x better performance over A100
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Goal:  Enable rapid analysis and real-time 
feedback during an in-situ experiment with 
complex  detector technologies

Proposed Approach: Deep learning-based 
method, BraggNN,  for massive  extraction of 
precise  Bragg peak locations from far-field 
high energy diffraction  microscopy data. 
BragNN has achieved 200X improvement over 
conventional pseudo-Voight profiling

Challenges: Model training capability is limited 
by the hardware

Application of the BraggNN deep neural network to an input patch yields a peak center 
position (y, z). All convolutions are 2D of size 3 × 3, with rectifier as activation function. 
Each fully connected layer, except for the output layer, also has a rectifier activation function. 

BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning A PREPRINT

(c)

(b)

(a)

Figure 6: A comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM
(black squares), pseudo-Voigt FF-HEDM (red circles) and BraggNN FF-HEDM (blue triangles) overlaid on NF-HEDM
confidence map. (b-c) Difference in position of grains between pseudo-Voigt FF-HEDM (b), BraggNN (c) and NF-
HEDM as a function of Grain Size. Color of markers in (b-c) represent the mean difference in position of expected and
observed diffraction spots. Size of markers in (b-c) represent the mean Internal Angle (see text).

CNN layers better extract feature representation in the latent space for fully-connected layers to better approximate its
center [Wang et al., 2018]. Here, we conduct an ablation study to show its effectiveness. We train two models, one with
attention block one without, using the same datasets, i.e., attention block is the only difference, and then we evaluate
their estimation accuracy. Fig. 7 shows the distribution of deviations. It is clear that both the 50th and 75th percentile
deviations are more than 20% worse than Fig. 4(c) where BraggNN has the non-local self-attention block, the 95th
percentile is about 15% worse.

4.2 Data Augmentation

We presented a novel data augmentation method to prevent model over-fitting and to address inaccurate patch cropping
using the connect component in the model inference phase. In order to study its effectiveness, we trained BraggNN on a
simulation dataset with and without augmentation. When trained with augmentation, we use an interval of [�1, 1] for
both m and n. Fig. 8 demonstrates three arbitrarily selected cases in our test dataset where the computed peak location
deviated from the corresponding patch’s geometric center (i.e., (5, 5) for a 11⇥ 11 pixel patch) in different directions.
We can see from the demonstration that BraggNN is able to locate the peak values precisely even when the peak is
deviated from the geometric center.

In order to quantitatively evaluate the effectiveness of data augmentation, we sample m and n independently from {-1,
0, 1} when preparing our test dataset to mimic imperfect patch cropping. That is, only 1/3⇥ 1/3 = 1/9 of the patches
have maxima at the geometric center.

Fig. 9 compares the prediction error on the test dataset in a statistical way. Comparing Fig. 9(a) with Fig. 9(b), we see
clear improvement when augmentation is applied for model training. The 50th, 75th, and 95th percentile errors are all
reduced to about 20% of those obtained when BraggNN is trained without data augmentation: a five times improvement.

5 Conclusions and Future work

We have described BraggNN, the first machine learning-based method for precisely characterizing Bragg diffraction
peaks in HEDM images. When compared with conventional 2D pseudo-Voigt fitting and higher resolution nf-HEDM,
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Courtesy: Z. Liu et al. BraggNN: Fast X-ray Bragg Peak Analysis Using Deep 
Learning. International Union of Crystallography (IUCrJ), Vol. 9, No. 1, 2022

A comparison of BraggNN, 
pseudo-Voigt FF-HEDM and NF-
HEDM. (a) Grain positions from 
NF-HEDM (black squares), 
pseudo-Voigt FF-HEDM (red 
circles) and BraggNN FF-HEDM 
(blue triangles) overlaid on NF-
HEDM confidence map 

Fast X-Ray Bragg Peak Analysis

https://doi.org/10.1107/S2052252521011258
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Fast X-Ray Bragg Peak Analysis

SN A100
e2e time (sec) 133 199 1.55x

throughput 
(samples/sec) 518 73.7 7x

For a batch size of 2048, we measure
(i) end-to-end (e2e) time that includes fixed time for compilation and data-preprocessing 

along with the model training time
(ii) Model throughput in samples per second
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Generative AI For Science including large language models
GenSLM:
• LLM-based foundation model trained with gene sequences, focusing on Sars-CoV2 

and E-Coli. 
• Currently runs with 25M to 25B parameter models on A100 supercomputers.
• We expect massive growth in model sizes besides sequences lengths of ~32K.

CosmicTagger: 
• Image segmentation task for liquid argon time projection chamber (LArTPC) detectors 

in Neutrino Physics experiments to classify each input pixel into one of three classes –
Cosmic, Muon, or Background. 

• UNet 3D-based model with high resolution image datasets both dense and sparse.

Ongoing Efforts
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• Integrate SN30 system with the PBSPro scheduler to facilitate effective job 
scheduling.

• Evaluate traditional HPC on AI Accelerators

• Understand how to integrate the AI Accelerator with ALCF’s existing and upcoming 
supercomputers to accelerate science insights

Ongoing Efforts
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Recent Publications

• GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez 
Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman, 
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster,
James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan              
** Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022, 
DOI: https://doi.org/10.1101/2022.10.10.511571

• A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads
Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, 
Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy 
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on 
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022

• Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized 
computational hardware      
Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics                                         
DOI: https://doi.org/10.3389/fphy.2022.958120
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Recent Publications
• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-

Transcription Machinery in Action* 
Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har
dy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza,J
essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, Ian Foster, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan, 
International Journal of High-Performance Computing (IJHPC’22) DOI: https://doi.org/10.1101/2021.10.09.463779

• Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms 
Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram, 
Hyunseung Yoo,  Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for 
Advanced Scientific Computing Conference (PASC’21). DOI: https://doi.org/10.1145/3468267.3470578

• Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan 
Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale Event-in-
the-loop computing (XLOOP), 2021

• Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture
Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas
Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021
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Thank You
• This research was funded in part and used resources of the Argonne Leadership Computing 

Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Venkatram Vishwanath, Michael Papka, William Arnold, Bruce Wilson, Varuni Sastry, Sid 
Raskar, Zhen Xie, Rajeev Thakur, Anthony Avarca, Arvind Ramanathan, Alex Brace, Zhengchun
Liu, Hyunseung (Harry) Yoo, Corey Adams, Ryan Aydelott, Kyle Felker, Craig Stacey, Tom Brettin, 
Rick Stevens, and many others have contributed to this material. 

Please reach out for further details
Venkat Vishwanath (venkat@anl.gov)
Murali Emani (memani@anl.gov)


